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Abstract

A maximin model for IRTbased test design is proposed.

In the model only the relative shape of the target test

information function is specified. It serves as a constraint

subject to which a linear programming algorithm maximizes the

information in the test. In the practice of test

construction, several demands with respect to the properties

of the test may exist. The paper shows how these can be

formulated as linear constraints in the model. A worked

example of a test construction problem with practical

constraints is presented. The paper concludes with a

discussion of some alternative models of test construction.

Keywords: Item Response Theory; Test Construction;,

Linear Programming
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A Maximin Model for Test Design

wit:. Practical Constraints

In item response theory (IRT), test design is usually based

on the concepts of item and test information functions. In

this paper, as an example, information functions under the

three-parameter logistic model for dichotomous responses are

considered. The results, however, hold for any IRT model.

The three-parameter logistic model is as follows:

(1) Pi(0) = ci + (1-ci) (1+exp( -ai(0-bi)]) -1

where 0 e <-00,+00> is the ability measured by the test items,

ai e (0,+m> and bi e <-.,+m> are parameters for the

discriminating power and difficulty of item i, and ci e (0,1]

is the probability of solving item i for 0 -4 -ea. The model

gives the probability of a correct response as a function of

the ability parameter e. For known item parameters, it holds

that Fisher's information about the unknown 0 in a single

response, Ui. (u1=0, 1), to item i is equal to

(2) I(Ui:0) = pi(0)/(pi(0)(1-pi(0)])2 .

For a sample of locally independent responses, U1, ...,

to the items i = 1, ..., I, Fisher's information is equal to

rj
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I

(3) I(U1 ..... U1;0) = E pi(e)/(10i(e)(1-pi(0)1)2 .

i=1

For item parameters estimated from response data with

sufficient precision, Birnbaum (1968) introduced (2) and (3)

as the item and test information functions.

The additivity in (3) suggests the following procedure

for test construction: A target information function for the

test is specified. Items are selected to fill the area under

the target function. The procedure is stopped as soon as the

sum of the item information functions exceeds the target. In

Birnbaum's (1968) and Lord's (1980) description of tha

procedure it is assumed that the selection is done by hand.

In general, however, finding an optimal solution (e.g., a

test of minimal length exceeding the target) by hand is

practically impossible. Even an approximate solution may

involve several cycles of back-tracking. Also, specifying a

target information function is not an easy task. Although a

test constructor may be able to provide the desired shape of

the curve (e.g., a flat curve for a diagnostic test or a

peaked one for decision making), the necessity to decide on

its exact heigth is likely to create a problem, the reason

being that the metric of the information measure has no

meaning to the average test constructor.

Recently, a series of papers has been published in which

the Birnbaum-Lord procedure is replaced by an algorithm from

zero-one programming (Rao, 1985; Wagner, 1975). The idea to
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apply zero-one programming to test construction was already

suggested in Yen (1983). Theunissen (1985) was the first to

present a zero-one programming model for test construction

with a target information function. In the model, the number

of items in the test is the objective function to be

minimized subject to the (linear) conditions that, at a

number of 0-values the information in the test is above the

target. The same idea has been explored in Boekkooi-Timminga

(1987), Boekkooi-Timminga and van der Linden (1987),

Theunissen (1986), Theunissen and Verstralen (1986), and van

der Linden and Boekkooi-Timminga (1988). In all these papers,

it is still assumed that the test constructor is able to

specify the exact heigth of the target information function

at a number of points. For a procedure enabling the test

constructor to do so, see Kelderman (1987)

It is the purpose of this paper to present a maximin

model for test construction. In this model only the relative

shape of the target test information function has to be

provided. A simple experiment to elicit this shape from a

test constructor is described in the next section. The data

from the experiment are then used to specify a linear

constraint in a model that maximizes the information in the

test. Since the objective function in the model does not

contain any item or test parameter, all properties of the

test can be controlled by including additional constraints

in the model. In the practice of test construction. several

demands with respect to the properties of the test may exist
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e.g., with respect to the composition of the test, the

administration time, the curricular fit, and possible links

between the contents of the items. It is another purpose of

this paper to show how such demands can be formulated as

linear constraints in the decision variables. A worked

example of the model including several of these constraints

is given. The paper concludes with a discussion of some

alternative zeroone programming models of test construction.

A Maximin Model

Instead of considering target information functions over the

whole range of 0.ralues zeroone programming models only

assume target values at certain points. One reason for this

is that item information functions are continuous, well

behaved functions for which the value of the sum at a certain

point does not differ drastically from those at neighboring

points. Another, more practical motivation is that interest

often exist only at certain critical ability levels ignoring

the properties of the test at other levels, for example, when

the test is to be used for decision making. Hence, in this

paper it is also assumed that a discrete approach is

appropriate, provided the number of points and their

positions are free.

The following experiment is proposed to elicit the

relative shape of the target information function from the

test constructor. First, the test constructor is faced with

I J
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the ability scale underlying the item bank. This can be done

by offering him or her a line displaying the contents of

items with locations at some wellchosen points. The same

practice is used in scalescore reporting of assessment data

(e.g., Pandey. 1986). Then, the constructor is asked to

select a number of scale points he or she wants to consider.

The number of points and their spacing are free. Let Ok,

k = 1. ..., K, denote these points. Next, he or she is given

a fixed number of chips (100. say) and requested to

distribute them over the scale points such that they reflect

the relative distribution of information wanted from the

test. The final step then is to ask the test constructor for

the desired number of items in the test. The answer to this

question can be facilitated by providing some statistics

about the time typically needed by the group of examinees to

complete items in the bank.

The Mode],

Now the idea is to select the items such that they maximize

the information in the test, while the resulting test

informatior. function still has the desired shape. Let rk be

the numbers of chips the test constructor puts at point ek

(k = 1 K).The relative target information function is

characterized by a series of lower bounds (rly, rKy) in

which y is a dummy variable to be maximized subject to the

constraint that test length is equal tothe value n specified

by the test constructor. Finally, xi (i = 1 I) is the

11
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decision variable as to whether (xi=1) or not (xi=0) to

include item i in the test. This leads to the following

model:

(4) maximize y

subject to

I

(5) E I
i
(0
k
)x

i
r
k
y > 0

1=1

(6)

I

E xi _ n'
1=1

Xi E (0, 1)

y z 0

k =

i = 1. .... I.

The constraints in (5) set a series of lower bounds. rky. to

the test information It(Ok) E Ii (e
k i
)x at each of the

=1
points Ok. The common factor y

1
in these bounds is maximized

in (4). The constraint in (6) sets the test length equal to

n.

If the lefthand side of the restrictions in (5) were

divided by rk the model would have new coefficients Ii(Ok)ril

for the decision variables xi and a coefficient equal to one

for variable y. In this representation it is clear that y can

be considered a lower bound to the weighted sums of decision

J 2,
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variables I
1

i
I(8 )r

k i
x and that the values of xi are

i=
selected such that this lower bound is maximal. Hence,

mathematically the model is of the maximin type. To solve the

model for the values of xi, i = 1, ..., I, and y, a branch

andbound algorithm from integer programming can be used

(e.g., Wagner, chap. 13). Such algorithms are readily

available in computer code nowadays.

Some Practical Constraints

For algorithmic test design to be practical, it is necessary

to provide control of features of the test other than just

the information function and the number of items. It should

be noted that the objective function in (4) is a dummy

variable introduced to cast the maximin criterion into a

linear model. It does not contain any item or test

parameters, and therefore does not explicitly control the

values of these parameters. For this purpose, however,

additional constraints can be included in the model. In this

section a review of constraints to be met in the practice of

test construction is given, and it is shown how these can be

modeled into a linear form. Throughout this section it is

assumed that (4) through

(8) is the basic model.

) of
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Test Composition

As already noted, for a sufficiently lezrge bank of test

items, the constraint in (6) controls the length of the test.

The same principle can be applied at the level of possible

subtests providing the test constructor with the ability to

control the composition of the test. Let Vj (j = 1 J) be

a subset of items in the bank from which the test constructor

wants nj n in the test. This is attained if the following

equality is added to the model:

(9) E x. = n.

i V;
1

j = 1, .

It is important to note that using a series of such

constraints provides the opportunity for controlling the

composition of the test simultaneously with respect to

several dimensions. For example, an item bank for English

could be partitoned not only with respect to its content

(e.g.. vocabulary, grammar, or reading comprehension), but

also to a behavioral dimension (e.g.. knowledge of facts,

application of rules, or evaluation) or the format of its

items (e.g., multiple choice, completion, or matching). For

each set in these partitions the constraint in (9) is

incorporated within the model, with the restriction that the

nj's are specified such that the sum over all sets in the

same partition is equal to n. If this option is used, the

constraint in (6) is redundant and may be dropped. Finally,
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observe how this example shows that (9) can be used with

repect to both disjoint and nondisjoint subsets of items.

Administration Time

In a computerized testing environment, the time needed to

solve the items in the bank by the population of examinees of

interest can easily be monitored. Let ti be, e.g., the 95th

percentile of the distribution of time for item i in the

population. Instead of fixing the length of the test, the

selection of the items could also be based on the time limit,

T, in force for the examinees. In that case (6) can be

replaced by

I

(10) E t.x.
t

T.

i=1

However, if there is a reason to restrict the number of items

in the test as well, (10) can also be used in combination

with (6) replacing the equality in the latter by an

inequality.

Analogous to (9). the composition of the test can be

controlled by introducing time limits at the subtest level.

Selection on Item Features

Including the constraints below in the model, it is possible

to give all items in the test the same feature.

Let ci be a positively valued numerical parameter

representing a feature of the items in the bank. Then it is
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possible to restrict the selection of the items to those with

ci e cu) by including the following set of inequalities

in the model:

(11) cixi s cu

(12)
1

ci
1xi s ck

i = 1. I

i = 1. I.

where cu > ck .

Unlike (9), these constraints do not fix the length of

subtests. They are used to give all items in the test the

same properties. At the same time. (9) can be used to compose

the test with different item properties.

If the frequency of administration of the items in the

bank is monitored, the constraints in (11) through (12) can

be used to restrict the selection of the items to certain .

frequencies. For example, if the intention is to obtain

uniform usage of items in the bank, (11) can be used to set

an upper bound for item use thus restricting the selection of

items to those with lower usage.

Another example of the use of (11) through (12) is to

restrict the administration time, ti, for each individual

item in the test to certain limits.

It is also possible to substitute one of the parameters

in the item response model for ci. In this way. the

constraints can be used, for exa le, to select items with

values for the difficulty parameters in a certain interval.
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For the Rasch model, this allows for the selection of items

based on *heir probabilities of success: Let 00 be the a

priori known average ability of the group of examinees, and

let (pi,pu] be the interval to which the probabilities of

success for the "average" examinees are restricted. It

follows that the items must have the values of the difficulty

parameter, bi, in the interval [bk.bu] determined by p(00;b0

= pu and p(00:bu) = pt where p(.) is the logistic function

specified in the Rasch model. Selecting items based on their

probabilities of success for given examinees may be desirable

for instructional reasons. Constraints like (11) (12) need

not enter the optimization phase of the procedure. They imply

that certain items, and hence their decision variables, are

excluaed from the model. Normally, a reduction phase precedes

the actual optimization in which such constraints are used to

give the model its most economical form.

Groupdependent Item Parameters

If the item bank has to serve distinct groups of examinees,

items may have different properties for different groups. In

such cases it is obvious to consider the parameter ci in (11)

(12) as group dependent. In school settings, for instance,

the recording of the date of the final administration of item

i to group g = 1, G may be useful. The constraint in

(12), with cgi instead of cg then allows the selection of

items for one group that have not been used after a given
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date for other groups. Such strategies may be instrumental in

solving the problem of test security.

If cgi is allowed to take only the values zero and one.

it can be used to adapt tests to curriculum differences

between groups. Let cgi indicate whether (cgi=1) or not

(cgi=0) item i covers a part of the curriculum of group ,.

Then the following constraint automatically suppresses the

administration of items to group g topics for which

instruction is absent:

(13) xi :5 cgi i = 1. ..., I.

Inclusion or Exclusion ofJndividual Items

For some personal reason the test constructor may want to

include or exclude certain items from the test. As already

noted by Theunissen (1985) and BoekkooiTimminga (1987). the

following constraints can be used for this purpose:

(14)

(15) xi = 1

with

(0) (1)ILnIf = 0
J j

IS

i e V(1)
J

i e V
(0)
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where V(0) and V
(1)

are subsets of items from the bank from

which all or none of the item should be included in the test.

respectively.

Interitem Dependencies

In some practical situations certain items are not allowed to

be administered on the same test. For instance, this may be

the case if some items contain a cue with respect to the

solution of other items. Suppose Vj (j = 1. J) now

indicates a subset of mutually exclusive items in the bank.

Then, the following multiple choice constraint allows the

selection of at most one item from this set:

(16) < 1 j = 1, J
ieVj

By raising the righthand side of this constraint more items

are allowed to be selected.

The opposite case occurs if the selection of one item

entails the necessity to select other items as well. This may

occur if the content of some items builds on that of other

items. (The question if one of the current response models

could fit such items is deliberately omitted.) It is also

possible to model the presence of this dependency between

test items as a linear constraint. Let Vj (j = 1, J) now

represent a subset of items in the bank of which the

selection of any item impkies the selection of all. The
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following equality guarantees the simultaneous inclusion or

exclusion of these items from the test:

(17) I x:, IVjlxii

where
I *IVj denotes the number of items in Vj and ij is an

arbitrary item in Vj.

Another approach to the problem of interitem depende'i

cies, using Boolean algebra, is given by Theunissen (1986).

Computational Procedures

It is well known that 0-1 programming is NPhard. For the

present test construction problem this means that if the

number of items in the bank (and hence of the decision

variables in the model) increases, the amount of CPU time

needed for an exact solution may become unpractical. In such

situations approximate solutions with good properties are

required.

In general two approaches have been followed by the

authors to arrive at approximate solutions: (1) relaxing the

assumption of discreteness of the decision variable in the

model and rounding the result, and (2) stopping a branchand

bound algorithm after a number of steps. If the assumption of

discreteness is relaxed, the decision variables are allowed

to take values in the interval <0,1> and the problem boils

2J
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down to a regular linear programming model which can be

solved quickly using the simplex algorithm. A wellknown

theorem in mathematical programming guarantees that the

number of fractional values for the decision variables is

maximally equal to the number of constraints in the model

(Dantzig, 1957). However, practical experience by the authors

and others in the field has shown that mostly this number is

much lower than its maximum. For the test construction model

in this paper, it is not possible to round all fractional

values to one, as is done, e.g., in Theunissen's (1985) model

of minimal test lenght, because then constraint (6) is not

always met. A more favorable, therefore, is optimal rounding.

In this option, the constraints in the model are adapted to

the characteristics of the items already selected in the test

with decision variable values one, and next an exact solution

is computed for the remaining 0-1 Problem in which only the

few decision variables with fractional values in the original

solution are considered. The adaptation of the constraints is

a simple task which can easily be implemented in computer

code. For example, in the optimal rounding procedure

constraint (5) has to be replaced by

F
(18) I I f(Olidxf rkIr /*(9k)

0 k = 1, K
f=1

where f = 1, F are the items having fractional values in

the original solution, If(0k) is their information at Ok, and

I*(8k) is the sum of the information of the items with

AC.. AL
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xi = 1. lecause the number of fractional values is small, the

0-1 problem can be solved quickly and the value of the

objective function will differ hardly, if at all, from its

optimum. Hence, optimal rounding will give excellent

results.Optimal rounding does not produce results necessarily

meeting all types of constraints, though. This can be shown

by a simple example: Consider the constraint xi x2 = 0.

and, assume that the solution to the relaxed model contains

xi = x2 = 0.5. Then, the 0-1 problem will not have a

solution, because both or none of the variables should take

the value 1. Fortunately, such cases can directly be seen

from the solution to the relaxed model. If not,

a very small amount of CPUtime to detect the

the following approach to solving the 0-1

applied.

In the second approach, a branchandbound algoriL.nm is

to solve the original 0-1 problem stopping the processused

it only takes

problem. Then

model can be

after a number of steps, e.g. atter the first 0-1 solution is

found. This solution also fits the constraints but experience

has shown the.; the objective function value generally is not

so close to its optimum as in the previous approach.

Finally, it is stressed again that not all of the

constraints in the model need to enter the optimization

process. Normally, a reduction of the model precedes the

actual optimization. Some of the specifications by the test

constructor result in fixed variables,, whereas others may

entail redunc:cint constraints. In the reduction phase, all

2
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fixed variables are removed from the model adapting the

remaining constraints when necessary. Next, redundant

constraints are traced and eliminated. This procedure was

followed in the below example.

Example

Using the threeparameter logisitic model, an item bark of

1.000 items was randomly and independently drawn from the

following distribution: ai - U(0.5;1.5). bi - N(0;1), and ci

- U(0;0.4). Furthermore, the items were given administration

times (in minutes) from ti - U(3;11), two groups of examinees

with different but overlapping curricula were considered

giving the items curricular fit indices cgi = 1 with

probability .50 for each group, and 50%. 25% and 25% of the

items were considered to be of the multiplechoice, matching,

and completion type, respectively.

A test was designed with equal information at 0 = 2. 0,

and 2. Thus rk was set equal to one for all k. Also, the

following constraints applied: (1) No items with

discrimination parameters ai < 1.0 or guessing parameters

ci > 0.2 were allowed to enter the test; (2) The test should

fit the curricula of both groups of examinees;, (3) The

maximum administration time for the test was equal to 100

minutes; (4) Items 251 and 256 were not allowed to enter the

test, but items 300 301 had to be in the test; (5) The test

A t.)
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should consist of 10 multiple choice, S matching, and S

completion items.

The test construction model was solved using the program

LINPROG (Anthon:cse, 1984) on an Olivetti M24 personal

computer with hard disk and mathematical coprocessor. Four

solutions were obtained: (1) the optimal 0-1 solution

(branchandbound): (2) the solution to the relaxed model

(simplex); (3) the optimally rounded solution (simplex and

next branchandbound): and (4) the first 0-1 solution

(truncated branchandbound). Solution 3 and 4 were obtained

using the procedures described above. In Table 1, the CPU

times and the numbers of iterations of the solutions are

Insert Table 1 about here

given. As could be expected, the time needed for the exact 0-

1 solution, albeit not prohibitive for some personal computer

applications, is much larger than for the other solutions.

Optimally rounding the simplex solution, which had six

fractional values, required only 3.60 seconds. Extensive

simulation studies of test construction models (Timminga,

1985) have shown that the CPUtime tends to increase with the

numbers of 8 points, items and constraints in the model. No

systematic effects could be observed for the spacing of the

22;
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0points and the distributions of the parameter values of the

items in the bank.

Table 2 summarizes the characteristics of the tests

Insert Table 2 about here

selected in the four solutions. The test for the simplex

solution was obtained by rounding to the nearest integer. As

a consequPnce, this solution does not meet the constraint on

administration time and demands a little more than T = 100

minutes. Like the other solutions. this soltition does meet

all other constraints. Table 2 also shows that the optimally

rounded simplex solution coincides with the optimal 0-1

solution. This will often take place with few fractional

values in the solution, but is not necessarily so.

Discussion

In this paper an IRTbased test construction model with a

maximin objective function was proposed. Instead of a maximin

function, other objective functions could be used for test

construction. Table 3 gives a list of possible alternatives

or
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Insert Table 3 about here

considered earlier in the literature or studied by the

authors. Except for objective function 4, for each function

in the list it is assumed that in addition the following set

of target reachability constraints is included in the model

I

(19) Z I
i
(0
k
)x

i
I(O

k
,

1=1

k = 1, .... K.

where I(0k) denotes the value of the target information

function at Ok. Compared with the objective functions in

Table 3, the maximin function combines two favorable

features. First, it is the only one that has the advantage of

a relatively easy way of specifying the target information

function. Unlike the other models, no familiarity whatsoever

with the metric of the information measure is assumed. Two,

the basic model in (4) through (8) always has a feasible

solution for test lengths n 5 I. Other models may have

feasibility problems when, along with the required test

length, an absolute target information function has to be

model is just a collection of test items. To make them into a

test, the items should be put into an appropriate order of

specified. 'Objective function 1 solves this problem in a

different way).

Strictly speaking, a solution to a test construction

.

PC
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administration. This again can be considered as a problem of

optimization subject to constraints with respect to. e.g..

item difficulty, administration time, or topic structure. How

this problem can be solved using a linear programming model

is the subject of another paper.

As a final comment it is noted that in a computerized

test system test construction models can also be used in an

interactive mode. In doing so, the system selects a test a

requests the user to indicate which items are appropriate and

which are not. In the next stage. the model is used to select

a new version of the test, but now with xi = 1 for the items

that have to be retained and xi = 0 for those that were

rejected. The process is repeated until all items are

considered appropriate. Interactive use of test construction

models is recommended since it allows test construction to be

based on possible remaining constraints of interest that

cannot be modeled as linear (in)equalities.
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Table 1

CPU Times and Numbers of Iterations for Four Solutions

CPU Iterations

Optimal 0-1 solution

(branch-and-bound)

4:11:42.30 32,570

Linear solution

(simplex)

00:00:29.50 68

Optimal rounding

(after simplex)

00:00:03.60 21

First 0-1 solution 00:01:13.60 153
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Table 2

Description of the Solutions for the Four Approaches

y It( 2) It(0) It(2) T n

Optimal 0-1 solution 3.300 3.300 3.336 3.306 98 20

Rounded linear solution 3.187 3.374 3.187 3.273 102 20

Optimally rounded
solution 3.300 3.300 3.336 3.306 98 20

First 0-1 solution 3.244 3.265 3.536 3.244 100 20
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Table 3

Alternative Objective Functions in Test Construction

Mathematical Formulation

I

1. Minimization of test length
(Theunissen, 1985)

min I
i=1

xi

K I

2. Maximization of test information max E E I (8 )x
k=1 i=1 1 k

I K
3. Minimization of sum of positive min I I 1 (0 )x

deviations from the target i=1 k=1 k i

(Timminga, 1985)

K
4. Minimization of sum of absolute

deviation from the target
min E

k=1
y + uk
k

subject to I Ii (0ki)x y
k

+ =
i=l

k = 1, K

yk, uk 1. 0

5. Minimization of the largest min y
positive deviation from the I

target where the target is met subject to I Ii(8k)xi y 5 I(8k).
at all points 1=1
(van der Linden, (1987) k = 1, ..., K

6. Minimization of administration
(BoekkooiTimminga &
van der Linden)

7. Minimization of frequencies of
item administrations
(BoekkooiTimminga &
van der Linden, 1987)

I

min I f.x.
i=1

I

min E fx
i=1 1

y?.. 0
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